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The magnitude and radial profiles of noninductive currents driven by fast magnetosonic waves in tokamaks
have been calculated directly from the wave-induced quasilinear flux in a toroidal geometry and a Green’s
function for the current. An expression for the quasilinear flux has been derived whichaccounts for coupling
between modes in the spectrum of waves launched from the antenna. A Fokker–Planck code for the Green’s
function and a full wave code for the electric field in the quasilinear flux are used to evaluate the current in a
specified toroidal geometry.

PACS: 52.35.Hr, 52.55.Fa, 52.50.Gj

Radio frequency (RF) generated currents may play a crit-
ically important role in achieving steady state operation of
devices and for current profile control in magnetically con-
fined toroidal plasma such as those found in tokamaks. The
RF driven currents in tokamaks are presently modeled with
one and two dimensional codes [1] which use Ehst–Karney’s
parameterization [2] of current drive efficiencies – defined as
the ratio of the current,J , to the power,P , – to calculate fast
wave [3] driven currents. This parameterization assumes a
model quasilinear diffusion tensor (D ql ) and requiresa priori
knowledge of the wave polarizations. These approximations
may be avoided by directly calculating the quasilinear diffu-
sion tensor from the Kennel–Englemann form [4] using elec-
tric field polarizations calculated by a full wave code, thereby
eliminating the need to use the approximation inherent in the
parameterization. Current profiles are then calculated using
the adjoint formulation [5]. This approach has been imple-
mented in the FISIC code [6], and the accuracy of the param-
eterization of the current drive efficiency,� = J=P , judged
by a comparison of the current fromJ = �P with the direct
calculation. Results indicate that in the approximation where
trapped electron effects may be ignored, the Ehst–Karney pa-
rameterization is in excellent agreement with the direct calcu-
lation.

In the Ehst–Karney model, the efficiency,�, was parameter-
ized by combining a ray–tracing solution for the wave fields
with the quasilinear flux,�ql, derived from a homogenous
model. Since the rays are assumed to be uncorrelated, it is un-
clear how one should employ the efficiency in calculating the
current from a spectrum of waves [7]. As we shall show, the
current produced by each mode in the spectrum is best given
by the product of the efficiency for that mode times the cross
spectrum power (the product of one mode with the entire spec-
trum.) We say “best” because the efficiency, being the ratio of
two expressions which are quadratic in the field amplitudes,
is not a linear operator. The effect of this approximation will
be negligible if the wave spectrum is sufficiently narrow that
the efficiency is constant with respect to the phase velocity of

the modes. Another consequence of the ray–tracing picture is
that one cannotaccount for phase correlations between mul-
tiple wave–particle interactions. We do not address this issue
in this paper, though, our model may be readily generalized
to include such effects. The central results of this paper are
a validation in high aspect ratio(A � R=r >� 3) , whereR
andr are the major and minor radii of the toroidal surface)
regimes of the efficiency when applied properly to a spec-
trum of waves, and a direct calculation of the current using
a quasilinear flux model for a spectrum of parallel wavenum-
bers,kk � k �B0=B0, derived from first principles (B0 is the
equilibrium magnetic field.)

If the wave–induced electric fields in the plasma are known,
one can in principle determine the steady state current from
the balance of the quasilinear diffusion,D ql , against the colli-
sional drag,Cc(f):

Cc(f) = �Cw(f) � @
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Rather than solve Eq. (1) for the perturbed distribution for
each� (we will drop theql subscript at this point), an equiv-
alent solution may be found through the use of the adjoint
formulation [8]:
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where the adjoint function,�, is the solution to the Spitzer–
Härm problem [9]. � measures the incremental current de-
posited in the plasma by an impulse in velocity space. It serves
as a Green’s function [5] for the steady state Fokker–Planck
equation, Eq. (1), which determines the equilibrium current.
Eqs. (2) give the wave induced current,Jk, and power,P , as
moments of the quasilinear flux. The problem is therefore re-
duced to a calculation of� from the wave fields.

Fast wave current drive efficiency is maximized under con-
ditions where there are no ion resonance layers in the plasma,
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so all of the wave’s power is ultimately deposited in the elec-
trons. Therefore, we limit our scope to the calculation of the
quasilinear response of the electrons to the wave fields. Iff

is the equilibrium distribution, and~f the small perturbation
of the distribution by the wave fields, the quasilinear flux is
determined from the Vlasov–Maxwell system of equations in
the form:
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where� measures the history of the particle’s motion up till
the present, and primed quantities are evaluated along the past
orbit [10].

The expression for� is made explicit using a spectral rep-
resentation in which the wave fields are expanded in toroidal
and poloidal Fourier modes:
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where is a flux surface quantity,� is the toroidal angle,�
is the poloidal angle measured from the center of the flux sur-
face, and! = !r+i�. After averaging over the toroidal angle
of symmetry,�, and over the wave period, the RF diffusion is:
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The complex exponential terms act as a resonance term that
contributes strongest when the variation of the sum of their
arguments is near zero. This resonance term depends on only
one of the poloidal indices. Both poloidal mode numbers re-
main because of the inhomogeneity in� introduced by the
equilibrium magnetic field. The poloidal modes are coupled
together by the inhomogeneity ofB0 in � and prevent a spa-
tial averaging as was done with the toroidal angle. In fact, an
average over� would lead to performing a bounce–averaged
calculation that accounts for the trapping of electrons in the
magnetic well of the poloidal field.

Since the fields have been Fourier transformed in directions
orthogonal tor , the wave–vector components parallel to
the flux surface are representable as algebraic quantities. In
order to simplify the phase integral we introduce the equations
for electron motion on the flux surface, Eqs. (5). We neglect

motion normal to the flux surface which is due to gradient in-
duced drifts of order�=L, where� = v?=
 is the Larmor
radius,
 is the gyrofrequency, andL is the equilibrium gra-
dient scale length. Hence, we use:
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where we have grouped terms explicitly inkk andk� such that
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and where� is the gyroangle and( ̂; �̂; b̂) are the local Stix
coordinates [11]. The direction gradients serve to highlight
the fact the the wavenumbers are related to the scale lengths
of variation of the fluctuating quantities. Thek�v? term in
Eq. (6) is small for fast waves and has an average contribution
of zero over the wave period except when the frequency is near
a cyclotron harmonic. The drifts of the electron’s gyrocenters
are assumed to be negligible, and so the particle trajectories
lie on a flux surface. At this point, we will drop the toroidal
harmonic index,n, because toroidal symmetry makes the re-
sponse of the system independent foreachn, and expand in a
power series about the guiding center, to find:

� = e2�t
��e2
2m

�
<
( X
m1m2

ei(m2�m1)�

 
1 +

v? � b̂



�r
!h

E
�
m1

( ) +
v

c
�B

�
m1

( )
i

Z 1

0

d�ei	(�)

 
1 +

v?
0 � b̂

0


0
�r
!
Em2

( ) � v0
)
@f

@"
(7)

After averaging over the gyroangle in velocity space and drop-
ping harmonic terms:
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The method of stationary phase in the limit,� ! 0, leads to
the usual�–function resonance behavior.
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Note that ifr? ! k?, Eq. (9) is identical to the Kennel–
Englemann form [4] in which only then = 0 terms are re-
tained and the Bessel functions are expanded to lowest order
in k?� (heren is the cyclotron harmonic.) Expanding Eq. (9)
out, leads to our final expression for�:
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In this form, the first term contains the magnetic pumping
contribution whose strength is related to the parallel magnetic
field, the third term is the usual Landau damping term, and
the second is the cross term. Note also that for these Lan-
dau resonant terms, the flux is purely in the parallel direction
in velocity space. In Fig. 1, Eq. (10) is plotted for several
poloidal locations on a given flux surface. The profile shows
a null at v? =

p
2vte, wherevte �

p
Te=me is the elec-

tron thermal velocity. At this point there is a balance between
magnetic pumping and Landau damping, since these two are
out of phase for electrons. The general shape of the curves is
k D qlk � (2� x2)2, wherex � v?=vte. This is the result ex-
pected in a homogenous plasma for Alfv´en wave polarization
and is the assumed analytic form for the quasilinear diffusion
used in the Ehst–Karney parameterization.

FIG. 1. �ql plotted for various� on a given flux surface.

We proceed to calculate the power and current deposited in
the plasma via Eqs. (2). In order to make meaningful com-
parisons between the parameterized model,Jk = P�, and
our direct calculation,Jk =

R
d3v � � @�=@v, we check

the accuracy of our calculation of�. This is done by com-
paring the power calculated from the plasma conductivity,
P = E � �$A � E�, with the power calculated from the quasi-
linear flux, P =

R
d3v � � @�=@v, which are analytically

equivalent [12]. Excellent agreement is found, as displayed in
Fig. 2.

With the accuracy of� verified, the current flowing on a
flux surface is now calculated from both the Ehst–Karney pa-
rameterization and the adjoint moment of the quasilinear flux
for a high aspect ratio tokamak. The parameterized efficiency
is available only for a single mode. It is not be correct to cal-
culate the current from the power for each mode multiplied by
the efficiency for each mode, as has beendone by others [7].
Instead of a simple product, the correct procedure is a convo-
lution of efficiency with the power over the modal spectrum.
This is motivated by Eqs. (2) and (10) which may be com-
bined and written in a more suggestive form that emphasizes
the convolution overm’s for the current:
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Thus, the current is calculated from the parameterization for
a kk spectrum using the paradigm:Jk =
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. Figure 3 shows that the two
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current profiles are in excellent agreement. Given the results
shown in Fig. 1, this may have been expected.

/δ

FIG. 2. Power deposition profiles from two calculations are
equivalent. The dashed curve is a plot of power from the plasma
conductivity,P = E ��

$

A �E
� and the solid curve is from the quasi-

linear flux,P =
R
d3v � � @�=@v.

FIG. 3. Current profiles from parameterization,J = �P

(dashed), and direct calculation methods,J =
R
d3v � � @�=@v

(solid).

These calculations were performed in a high aspect ratio
geometry where the local approximation is good. As indi-
cated above, others have chosen to ignore the cross–spectrum
correlations and setm1 = m2 in Eq. (11) [7]. Numerical ex-
periments show that in the high aspect ratio limit, neglecting
these correlations can introduce deviations of� 10% from
the direct calculation, Eq. (2). It is anticipated that the in-
creased variation ofkk with the poloidal field at lower aspect
ratios will enhance the deviations of the direct model from the
parameterization because of increased correlations between
the spectral modes. At lower aspect ratios, the trapped par-
ticle fraction, which cannot contribute to the net parallel cur-
rent, becomes significant, causing the parameterization fit to
break down [2]. Trapped particle effects are currently being
included by generalizing to a bounce–averaged version of the
method outlined in this paper and low aspect ratio equilibrium
are being considered. A discussion of these effects will be re-
ported in detail elsewhere.
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